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ABSTRACT 

A review is made of some of the fundamental properties of the sequence of 
functions {t’b’}, k=l,..., s, i=O ,..., m,_,, with distinct X,. In particular it is 
shown how the Wronskian and Gram matrices of this sequence of functions appear 
naturally in such fields as spectral matrix theory, controllability, and Lyapunov 
stability theory. 

1. INTRODUCTION 

Let #(A) = II;,,< A-hk)“‘k be a complex polynomial with distinct roots 
x 1,.. ., A,, and let m=ml+ . . . +m,. It is well known [9] that the functions 
{tieXk’}, k=l,..., s, i=O,l,..., mkpl, form a fundamental (i.e., linearly inde- 
pendent) solution set to the differential equation 

m)Y(t)=O> (1) 

where D = $(.). 

It is the purpose of this review to illustrate some of the important 

properties of this independent solution set. In particular we shall show that 
both the Wronskian matrix and the Gram matrix play a dominant role in 
certain applications of matrix theory, such as spectral theory, controllability, 
and the Lyapunov stability theory. Few of the results in this paper are new; 
however, the proofs we give are novel and shed some new light on how the 
various concepts are interrelated, and on why certain results work the way 

they do. 

LINEAR ALGEBRA ANDITSAPPLlCATIONS43:229-241(1982) 229 

C Elsevier Science Publishing Co., Inc., 1982 

52 Vanderbilt Ave., New York, NY 10017 0024.3795/82/020229 + 13$02.50 



230 ROBERT E. HARTWIG 

Throughout this paper, all matrices will be complex and C nXn denotes the 
set of n X n complex matrices. We shall denote the spectrum, the minimal 
polynomial, and a general eigenvalue of the matrix A by a(A), $*(A), and 
h(A) respectively. As always, we shall denote columns by boldface letters, 
and use e: to indicate the row [O,. . . ,O, LO,. . . ,O]. We shall use A>0 to 
denote the positive definite Hermitian property, and shall say that A is stable 
if Re[A(A)]<O. 

Furthermore we shall denote by q[O, T], DO, the vector space of 
piecewise continuous complex valued functions of a real variable t on [0, 2’1, 
and let L,[O, co] denote the vector space of square integrable functions. Both 
vector spaces are Hilbert spaces under the inner product 

(dt)lYw) =~%1)Y(w~ 
0 

(2) 

with T-C co and T= co respectively. Lastly, if A = [a,, as,. . . , a “1, we shall use 
col(A)todenote[aT,a%,..., aL]r, and we shall use @ to denote the Kronecker 
product. 

This paper consists of seven sections. In Section 1 our concepts are 
introduced. In Section 2 we discuss the Wronskian matrix at zero; in Section 3 
the Gram matrix is introduced. In Section 4, an application of the Gram 
matrix to controllability is given. The spectral theorem for two commuting 
matrices is derived in Section 5 and applied to the Lyapunov equation in 
Section 6. The paper is concluded with remarks and conclusions in Section 7. 

2. THE WRONSKIAN AT ZERO 

Consider the differential equation (1) with fundamental solution set 
ordered as 

(eXlf, teAIf ,..., tml-leXlfleh2f, teA2’ ,... le’,T’, te’s’,..., tma-lex*‘). 

Then the Wronskian matrix W(t) of this sequence evaluated at the origin is 
given by 
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k=1,2,..., s. Since these functions are linearly independent, we know from 
the theory of differential equations that W(t) is invertible for all values of 
t E R, and in particular at t = 0 [9]. The remarkable fact is that the latter is 
essentially the reason why the one variable spectral theorem, as given in [5, p. 
1041 and (7) below works. 

Indeed, if AE C,,, has minimal polynomial +!( A ) = II kE i( h - X, )“k with 
m-m,+ .. . + m, (and Xi # Xi), and f(X) is any complex valued function 
for which f(‘)( hk) is defined, then one may define f(A) to equal p(A), where 
p(h) is any interpolation polynomial such that pci)(hk) =f(‘)(?~,). This 
concept is well defined, since for any two polynomials p(X) and 9(h), 
p(A)=q(A)o$](p-q)op”‘(A,)=q(‘)(X,), k=l,...,s, i=O,...,mk_l. 

Now consider the system of linear equations 

[ ( IID; r,+r,x+ . ‘. +r,-,h”-‘)],=,l=f’i’(h,), (5) 

k= 1,. . . , s, i=O,. . ., mk_-l, in the variables 7;. Since the coefficient matrix is 
precisely the transpose W(O)r of the Wronskian matrix at 0, as given in (3), it 
follows that there exists a unique solution to the equation 

W(O)%=f, (6) 

where rr=[r,,,rr,..., r,,_r] and fr=[f(hi),f’(hr) ,..., f;iTj-l) ,... 1. More- 
over, since the polynomial r(X)=r,+r,X . . . +r,_,A”-‘, has degree ar(A)< 
m, it follows that r(X) is in fact the unique Hermite interpolation polynomial 
“agreeing with f(h) on the spectrum of A” [5, p. 961. 
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The spectral theorem now simply consists of rearranging the coefficients 5 
in r(A) to give 

f(A)=[Z,A,A’,..., A”-‘](&I,) 

=[Z,A,..., Am-‘][(Wr(O))-rf@Z,] 

= Z~,Z:,...,Z,m~-l](f~zI,) [ 

= 2 2 f”‘( X,)2: (spectral theorem), (7) 
k=l i=O 

where 

Z=[ZT,Z; ,..., Z;s-l]=[Z,A ,..., Am-1][(WT(0))-1C3Z]. (8) 

The latter shows not only that the Zi are polynomials in A, independent of 
f(h), but also that the spectral theorem merely consists of a suitable change of 
basis for the algebra generated by A, namely from (At) to (Zi). 

Applying the spectral theorem (7) to f(A)=eX’ yields the well-known 
identity 

e At= Cl :g tiexk'Z:, (9) 

in which the Zi are linearly independent. The appearance of the fundamental 
sequence t ie hkt in (9) underscores its importance. We shall now complete the 
equivalence by showing that (9) in fact implies that the functions t’e’k” must 
be linearly independent solutions to +(D)y=O. Indeed, it follows at once 
from (9) that 

d _eAt,AeAt 
dt 00) 

and hence that O=~(A)eA’=+!@)eA’=~k,i$@)tie’~‘Z~. By the indepen- 
dence of the Zi we have that $@)t e i Xkt=O. Lastly, for any polynomial p(X), 
we see from (10) that p(A)=p(D)eA”(,=,=Ck, i[p(KD)tie”~t],,oZ~ = 
&ip(i)(Xk)Zi, which gives, on taking p(h)=X’, j=O,.. ., m-l, that 
[I, A,A’,..., A”-‘]=[Z; ,..., ZFy-l] WT(0). Since the Zi are independent, 
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the change of basis matrix W(O)r is invertible, and consequently if 
~k,iciktieXk”~O then W(O)c=O=c=O, where cr=[coI,cil,... 1. In other 
words the {t ‘&‘} are linearly independent, as desired. 

3. THE GRAM MATRIX 

Let (x1,x,,..., x,) be a sequence of m vectors in a complex inner 
product space (V, (. 1. )). Th en it is well known [S, p. 2511 that this sequence 
is linearly independent if and only if the Gram matrix G(x,, . . . , xm)=[(xilxi)] 
is positive definite Hermitian, i.e., G>O. Moreover, if the sequence ( .xi ) is 
independent, we may orthogonalize this sequence to yield the orthogonal 
sequence (yi, y2,. . . , y,). This sequence is unique within a scalar multiple. In 
particular we may use Gram-Schmidt orthogonalization in the form 

t Is t,, . . . 

t22 

(Y1,Yz,...,Ym)=(rl)X1)...)Xrn) 0 . 

for some tli, or use the form 

Y,= 
Gp-1 I : I3 Xp-1 

p= 1,2, 

(Xpl%>. . . (x,Ix,-1) I XP / 

(11) 

t mm 

,m, (12) 

where G,,=G(x,,..., xP). Either series will yield the unique orthonormal 
sequence (z,,..., z,) obtained from the (xi). 

The fact that we shall need later is that for any sequence of constants 
c,, . . . , c,,&, there exists a vector u E V such that 

(xilu)=ci> i=1,2 ,..., m. (13) 

Indeed, if we let u = Zy! id i x i, with d i to be determined, then on taking inner 
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products we obtain 

That is, 

Cm=(X,IU)=dl(XmlX1)+ ... +d,(x&,). 

G,,,d=c, 

where d’=[d, ,..., d,] and cr=[c, ,..., c,]. Hence d=G,‘c and 

u = CTG-‘X = 
m 

(14) 

05) 

4. CONTROLLABILITY AND THE GRAM MATRIX 

Let O< to < tr, and let V denote the real vector space 9 [to, tf] of piecewise 
continuous functions on [to, tf]. In control theory one may represent a large 
class of control problems by the linear system 

i(t)=Ax(t)+Bu(t), 06) 

where A,,, and Bnxr are real and constant matrices, and u(t) is piecewise 
continuous. The system (16) is called completely controllable (C.C. for short) 
if for every initial state x0 and every final state xf, there exist a finite time 
interval to d td tf and a control vector u E V” such that (16) has a solution x( t ) 
with x(tO)=xO and x(t,-)=x~ 

Now since the general solution to (16) is given by 

x(t)=e AWdXo+ 
/ 

teA(t-s)Bu(s) ds, 
to 

it is easily seen that the system (16) is C.C. if and only if the linear 
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transformation $: W” -+ Q: n defined by 

@(v(t)) = (TeAfBu(t) dt 
JO 

(17) 

is onto, where W is the real vector space q[O, T] and T= tf- t,,. 
A fundamental result in control theory states [l, p. 841 that (16) is C.C. if 

and only if the controllability matrix (?[A, B] =]B, AB, A’B, . . . , A”-‘B] 
satisfies 

ranke[A, B] =n. (18) 

That is, e [ A, B] is of full row rank, and contains n independent columns in 
C”. 

The purpose of this section is to use the Gram matrix to give a short 
rigorous proof of the sufficiency of this result. The necessity is easy, as may be 
checked in [l, p. 841. Indeed, we start by turning W= q[O, T] into a complex 
inner product space with the usual inner product given by (2). Now select 
fixed p and 9 such that 1 G p < n, 1~ 9 < r, and consider (17) with v( t ) = 
2?( t )e,, v(t) E W. Substituting from (9), we see that 

G(C(t)e,)= T ~Z~Be,(tiexk’lv(t)). 
i 

Since the functions {t’ex!J} are again linearly independent, we may conclude 
from (13) that for any choice of constants cik, k=l,.. ., s, i=O,. . ., TTI~_~, 
there exists a function v(t) E W such that (tiex+(t)) =cik. In particular if 
we select cik=[Di(Xp)lhzX,, and denote this function v(t) by v,(t), then we 
see from the spectral theorem (7) that 

+( iYp(t)e,) = 2 2 Z~(XP)~~Be,=APBe,. 
k i 

Since APBe, is real, it follows that there exists a real piecewise continuous 
control vector up&t ) = Re[ V,( t )e,] such that 

@(up& 1) =APBec7. 

This means that evey column of APB, p = 0, 1, . . . , n - 1, is in the range R(G) 
of +. Hence if rank((? [ A, B])= n, we may conclude that there exist n 
independent columns in R(G) and hence + is onto, as desired. It should be 
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remarked here that (i) our proof did not go outside the space of piecewise 
continuous functions, unlike some of the more established proofs [12, p. 4991, 
which use delta functions and distributions, and from which it is not obvious 
that a piecewise continuous control function exists; (ii) the Gram matrix of the 
functions {tiexkt} was used in constructing u,(f). 

5. THE SPECTRAL THEOREM IN TWO VARIABLES 

Before we can turn to our last application of the Gram matrix to the 
Lyapunov equation AX + XA* = - Q, we shall first need the spectral theorem 
for two commuting matrices. This result was first stated by Schwerdtfeger [ 11, 
p. 321; however, this proof does not address the difficulties involved and the 
assumptions that have to be made. The proof we shall give is more in line 
with the flavor of this paper of using exponentials and fundamental sets of 
functions. It will be based on the identity 

e sA+tBzesAetB 
(19) 

which holds whenever AB = BA. 

Suppose A, BE CLxL, with respective minimal polynomials $A( X) = 
fl~=l(X-hk)“‘k, $B(X)=fl~=,(A-h,)“l, with m=ml+ ... fm, and n= 
n,+ ‘-0 + n,. Furthermore let Zi( A) and Y/(B) denote the spectral compo 
nents of A and B respectively. 

NOW suppose AB = BA, and let us consider the polynomial r(h, /J) = 
p z;=“z$=,r,,h /l 9. Our key observation will be that 

To prove this we note that by (19) 

r(A, B)eSA+tB=r(l[Ps,[[Pt)eSA+fB=T(D,,aD,)eSAetB 

= z x 2 rp,!D~(sieX~“)D,Q( t”ePft)ZtY/. 
k,i l,i p,q 
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Evaluating this at s=O=t, we get 

as desired. 
For any function f( A, p) : C ’ -+ C, we say that f is defined on o(A)Xa(B) 

if and only if the values 

k=l,..., u, i=O ,.,., rnk_-l, l=l,..., v, i=O ,..., n,_i, are defined and inde- 
pendent of the order in which the partial derivatives are taken. A sufficient 
condition for the latter to be true is that [4, p. 571 all the partial derivatives of 
order m,+n,-2 are continuous at (hk, pr). 

Analogously to the one variable case, we may now uniquely define 
f( A, B) for any function that is defined on a( A) X a( B), by 

f(A, B)=r(A, B)> 

where r( X, p) is any interpolation polynomial that agrees with r on a( A) X 
u(B). Again this concept is well defined, since for any two polynomials 

P(k pcl>> 4(X> PI _ 

p(A, B)=q(A, B) @ p’i’“(xk,~~)=9’i’i’(xk,~~). 

Hence the spectral theorem in two variables becomes 

f(A,B)= i $ m~'n~'[~~D~f(h,~)]A=h~,p=p,Z:y~. (21) 
k=l I=1 j=O j=O 

Lastly, the linear system 

m-1 n-l 

I: z rp,~pc19 
1 

=fcizi)(hk, 111) (22) 
p=o q=o X=A,.p=lr, 
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in the variables rp4 has as a coefficient matrix precisely W:(O)@ W,‘O), where 
W,(O) and W,(O) are Wronskian matrices of {s’eXk’} and {tie“@} respec- 
tively. We may thus conclude that (22) has a unique solution, thereby 
establishing the existence of the unique Hermite interpolation polynomial in 
two variables, of degree <m in h and degree --c n in p, and agreeing with f on 
a(A)Xa(B). 

6. THE GRAM MATRIX AND THE LYAPUNOV EQUATION 

Suppose again that A EC nXnr with minimal polynomial $( A ) = n i = i( X - 
hk)*” and m=m,+ . . . +m,. Let C(X)=AX+XA* be the Lyapunov opera- 
tor. A fundamental result states that [7, p. 2701 A is stable if and only if for 
every Q>O, C(X)= -Q has a unique solution X>O. 

The aim of this section is to prove sufficiency of this result by constructing 
a finite series solution [3,6], using the spectral theorem. The Gram matrix will 
then be used to show that this solution is actually positive definite. The 
necessity of the stability of A is easy and is left as an exercise. If Zi are the 
spectral components of A, then it is easily seen that the Z:* and I@ Z: are the 
spectral components of A* and ZBA respectively. Now consider AX+ XA* = 
- 0 with Q=PP*,O and A stable. Taking columns we obtain C?x = -q, 
where S=Z@A+A@Z, x=col(X), and q=col(Q). Since X,+A,#O, 9-l 
exists, and because Z,@A and x@Z commute, 9-i may be computed from 
the spectral theorem (21) to give 

Hence inverting x = - g- ‘g yields 

where 
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Now gz1.j) may be evaluated directly as 

Now consider L,[O, 001 with the inner product defined by (2). Then (t’exLt] 
tiexft)=l,OOt’+ie(x,+*l)tdt=g:f,li). Thus the mXm matrix G=[gt*/)] is pre- 

cisely the Gram matrix of the fundamental solution set tie’“‘, and hence 
G>O. Lastly, if Z=[Z:, Z: ,..., ZTs 11, then we may write (23) as 

X = Z(Z@P)(G@Z)(Z@P*)Z* > 0, (24) 

since y*Z = OT * y = 0 by the independence of the Zi. We conclude this 
section with the remark that (23) may of course be rewritten in the better- 
known form X = /FeAtQeA*tdt. 

7. REMARKS AND CONCLUSIONS 

(i) It is of some interest to observe that the invertibility of the Wronskian 
W(0) of (4) can also be proven in several other ways. For example, if 
WT(0)r =O with rT= [r “, r ,, . . . ,r,,_,], then this means, with the aid of (5) 
that [IID’(r, + riX + . . . + r,,_, Xm-‘]A=x, = 0. Consequently, r(X) is a poly- 
nomial of degree ar < m which has m roots, including multiplicities. It then 
follows that r(A) = 0 and hence r = 0. 

An alternative method, which is useful in numerical work, is to actually 
calculate det W(0)T exactly using a Van der Monde determinant, with distinct 
hki. This determinant is then evaluated using divided differences, after which 
mk of the Xki are forced to approach X,, k=l,. . . , s. This gives 

(ii) The spectral theorem (7) is actually also equivalent to the existence of 
the spiked interpolation polynomials $l( X), which satisfy 
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The selection of f=e/, j=l,..., m, in (6) indeed guarantees the existence of 
such polynomials. Moreover these polynomials may be identified with the 
fundamental solution set to the initial value problem 

#(D)y(t) =O, [y(O), y'(O), y"(0) ,... , y("-l)(O)] =er, i= 1,. . . , m. 

The existence of the two variable spiked interpolation polynomial follows at 
once from the existence of +l. Indeed, #(X)+:(p) suffices. 

(iii) Perhaps the most useful consequence of the spectral theorem in two 
variables is the fact that it furnishes a rigorous proof to the folklore theorem 
[8, p. 341; 2, p. 651 which says that in any identity between functions of two 
variables h and p, we may replace h and p by two commuting matrices, 
provided this makes “sense.” To be precise, if G(x,, x2) is a polynomial in x1 
and ~a, and &(A, p), i= 1,2, are functions defined on a(A)Xa(B), and if 
g(A, p)=G(fi(X, p), &,(A, p)), then g(A, B)=O whenever g(h,p) vanishes 
on a( A) X a(B). Indeed, let ri( X, EL) be the Hermite interpolation polynomials 
agreeingwithf;(h,~)onu(A)Xu(B),i=l,2.Then~(A,B)=ri(A,B). Now 
if h(h, p) is the polynomial G(r,(h, p), ra(X, p)), then h(A, B)= 
G(r,(A, B), r,(A, B))=g(A, B). The key fact now is that h(h, p) and g(h, p) 
agree on u(A) X u(B). This follows from a generalization of Faa di Bruno’s 
chain rule [lo] to functions of two variables, and the fact that G(x,, x2) is a 
polynomial Hence g(A, B)=h(A, B)=O, as desired. 

(iv) The identity esAt tB = esAetB is traditionally proven from the power 
series expansion of eA. An alternative and equally instructive proof is to use 
the contour integral representation 

eA=&je”(hl-A)-‘dA 
r 

for eA and likewise for eB, followed by a simple application of Cauchy’s 
theorem. 

The author wishes to thank Stephen Barnett for several stimulating 
discussions on the controllability and stability aspects of this paper. 
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